DNA can now be measured in terms of electronic signals with pocket-sized semiconductor devices instead of 100-pound machines. This has started to transform DNA analysis into a mobile activity with the possibility to track and analyze the health of organisms at unprecedented levels of detail, time, and population. But the remote cloud-based computer services currently needed to process the electronic signals generated by these miniature DNA-meters cost over $100 to complete an initial analysis on one human genome and consume over 1000 Watts of power. Also, the cost of wirelessly transmitting measured data to these cloud-based analyzers can exceed $1000 per human genome. Further, reliance on external high-performance compute services poses a greater risk for compromising the security of the DNA data collected. This project proposes the construction of a specialized high-performance miniature computer – the agile base caller (ABC) – built from re-configurable silicon chips that can connect directly to the DNA-meter and analyze the DNA it measures in real-time.

The ABC, by virtue of its size, will preserve the mobility of emerging DNA measurement machines, and will enable them to analyze data for less than $1 while consuming less than 10 Watts. These cost/power performance improvements will significantly drop the barriers to the application of genomic analysis to non-laboratory settings. For example, they will allow continuous monitoring of Canada’s food supply for the presence of harmful biological agents with the possibility of cutting analysis delays from weeks to hours.

Industry Partner(s):Canadian Food Inspection Agency (CFIA)

Academic Institution:York University

Academic Researcher: Sebastian Magierowski

Focus Areas: Health

Platforms: Cloud