According to a World Energy Council Report, population growth and rising standards of living across the world will at least double global energy demand by 2050. Simultaneously, carbon dioxide emissions must be reduced significantly to prevent a catastrophic rise in global temperatures. Clean and abundant renewable energy sources are available; unfortunately, the intermittency of solar and wind power is a prevailing problem which is limiting the potential for widespread use. Our project seeks to address both of these issues through development of novel catalysts to electrochemically convert CO2 captured from power plants into fuels and other higher value chemical feedstocks using renewable electricity. This innovative strategy will (1) provide a long term storage solution by converting renewable electricity into a stable chemical fuel, (2) provide a means to intelligently recycle CO2 rather than storing it in deep underground aquifers, and (3) provide a cleaner and cheaper pathway for production of industrial chemical feedstocks and fuels. This could be a truly disruptive technology which would allow Canadian led manufacturing of high value chemicals and fuels in a low-cost and low-carbon fashion. Additionally, there are large benefits to Canada’s energy sector by facilitating the dispatchability of renewable power.

Industry Partner(s):

PI & Academic Institution:Ted Sargent, University of Toronto

Co-PI Name: Aleksandra Vojvodic

# of HQPs: 6

Focus Areas/Industry Sector: Advanced Manufacturing, Energy

Platforms: Agile, BGQ, GPU

Technology: Real-Time Analytics