Organic light emitting diodes (OLEDs) present a unique opportunity to produce thinner and more efficient lighting and displays. This will change the way we interact with light. The main barrier to mass adoption of OLEDs is the manufacturing process, due to the need for high throughput while maintaining nanoscale precision. High throughput operation requires materials that can undergo elevated temperature without decomposing. Our objective is to use computational chemistry to model innovative materials that can withstand these elevated temperatures while still providing high performing OLEDs. We will simulate targeted compounds using SOSCIP’s computer cluster examining properties relevant to OLED manufacturing processes. Promising materials will be synthesized and their properties experimentally measured then compared to the simulation results. The most promising materials will then be integrated into OLEDs and characterized by OTI Lumionics in their pilot scale manufacturing line located in Toronto, ON.

Industry Partner(s):OTI Lumionics Inc.

Academic Institution:University of Ottawa

Academic Researcher: Benoit Lessard

Focus Areas: Advanced Manufacturing, Clean Tech, Energy

Platforms: GPU, Parallel CPU