Renewable electricity costs have been rapidly declining, enabling clean consumption of energy in many sectors. However, there is still demand for energy-dense liquid fuels, such as in heavy freight and air transportation. In this project, we will harness machine learning to develop technologies that enable the synthesis of liquid fuels from carbon dioxide and/or synthesis gas using renewable electricity. Industrially, liquid fuels can be synthesized from a mixture of carbon monoxide and hydrogen called synthesis gas (syngas). However, this process requires high temperatures and pressures, and is itself responsible for significant greenhouse gas emissions. We propose the use of electrocatalysis to produce these liquid fuels. To accomplish this, we will use computational modeling and machine learning methods to design electrocatalysts that efficiently convert CO2 or syngas into dense chemical fuels. These computational efforts will be validated through a parallel experimental approach that includes the fabrication of new catalyst formulations and the construction of prototype electrochemical flow cells. This project will enable the synthesis of clean, energy-dense liquid fuels that can replace the use of fossil-derived fuels in industry and transportation sectors. This project is a logical extension of the existing CO2 related projects previously underway with SOSCIP. This project will allow the research to achieve the next milestones in the overall goal to achieve beneficial conversion of CO2.

Industry Partner(s):IBM Canada Ltd.

Academic Institution:University of Toronto

Academic Researcher: Ted Sargent

Focus Areas: Clean Tech

Platforms: GPU, Parallel CPU