logo
  • About Us
    • Who We Are
    • Mission & Core Values
    • Equity, Diversity & Inclusion
    • Meet the Team
    • Board of Directors
    • Scientific Advisory Committee
    • EDI Advisory Group
  • Services
    • Is SOSCIP for you?
    • SOSCIP’s Industry Overview
    • Advanced Computing Platforms
    • SOSCIP Project Guide
    • Fee for Services Program
  • Initiatives
    • Community Fellowship
    • COVID-19 Response: A Curated List
  • Projects
    • Collaboration Opportunities
    • Research Projects Archive
  • Impact
    • Spotlight Homepage
    • Impact Stories
    • SOSCIP By the Numbers
  • News
    • Platforms Newsletter
    • COVID-19 Update: Operations
    • SOSCIP COVID-19 FAQ
  • Search

Research Projects

Focus Area
  • Blockchain
    • 5G/NextGen Networks
    • Advanced ManufacturingAdvanced Manufacturing
    • Aerospace & DefenceAerospace & Defence
    • AgricultureAgriculture
    • AIAI
    • Blockchain
    • Business AnalyticsBusiness Analytics
    • CitiesCities
    • Clean TechClean Tech
    • COVID-19COVID-19
    • CybersecurityCybersecurity
    • Digital MediaDigital Media
    • EnergyEnergy
    • Environment & ClimateEnvironment & Climate
    • FinTech
    • HealthHealth
    • ICTICT
    • MiningMining
    • Quantum
    • Supply ChainSupply Chain
    • TransportationTransportation
    • WaterWater
    • All
Platform(s)
  • All
    • Cloud
    • GPU
    • Parallel CPU
    • All
Academic Institution
  • All
    • Carleton University
    • McMaster University
    • Ontario Tech University
    • Queen's University
    • Seneca College
    • Toronto Metropolitan University
    • University of Guelph
    • University of Ottawa
    • University of Toronto
    • University of Waterloo
    • University of Windsor
    • Western University
    • Wilfrid Laurier University
    • York University
    • All
Quantum Resistant High Speed Blockchain Project
Collaborators: George Brown College & C-Scale
Blockchain

Quantum Resistant High Speed Blockchain Project

Our multi-layered technology solves the speed and scalability problems of current blockchain using a new physical paradigm to build the most efficient, open distributed network that is physically possible. This uses a new physical paradigm to replace the inefficient proof-of-work and proof-of-stake protocols that currently underpin open blockchain systems. This core innovation enables a multi-tiered technology platform that operates orders of magnitude faster than competing systems.

Industry Partner(s): C-Scale

Academic Institution: George Brown College

Academic Researcher: Butler, Ceit

Platform: Cloud, Parallel CPU

Focus Areas: Blockchain

Need more information?

SOSCIP Consortium
1 King's College Circle,

Toronto, ON, M5S 1A8

info@soscip.org

Follow Us

Subscribe to Platforms

By subscribing, you are consenting to receiving news, events and updates related to advanced computing in Ontario from SOSCIP.